Optimasi Desain Turbin Angin Vertikal Menggunakan Algoritma Genetika untuk Peningkatan Efisiensi Energi

Authors

  • Fitriani Ramadhani Politeknik Astra
  • Kartika Sari Politeknik Astra
  • Gina Sari Politeknik Astra

Keywords:

Computational Fluid Dynamics, Design Optimization, Energy Efficiency, Genetic Algorithm, Vertical Wind Turbine

Abstract

This research aims to optimize the design of a vertical wind turbine to increase the efficiency of converting wind energy into electricity. The main problem faced by conventional vertical wind turbines is the low power coefficient due to suboptimal blade shape and design parameters. To address this issue, this research applies a genetic algorithm (GA) as an evolutionary optimization method to determine the best combination of parameters, such as angle of attack, number of blades, and rotor height-to-diameter ratio. Numerical simulations were performed using computational fluid dynamics (CFD) software to evaluate the aerodynamic performance of each design variation generated by the algorithm. The results show that the application of the genetic algorithm successfully increased energy efficiency by up to 18% compared to the initial design, with more stable airflow distribution and greater rotor torque. These findings demonstrate that integrating genetic algorithm-based optimization and CFD analysis can be an effective approach in developing high-performance vertical wind turbines, while simultaneously supporting increased utilization of renewable energy.

References

Burton, T., Jenkins, N., Sharpe, D., & Bossanyi, E. (2011). Wind energy handbook (2nd ed.). John Wiley & Sons.

Carrigan, T. J. (2010). Aerodynamic shape optimization of a vertical axis wind turbine. University of Texas at Arlington. https://mavmatrix.uta.edu/mechaerospace_theses/137/

Chern, M. J., & Chen, Y. L. (2021). Vertical-axis wind turbine blade-shape optimization using genetic algorithms and direct-forcing immersed boundary methods. Journal of Engineering Mechanics, 147(7), 04021043. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001896

Fatahian, E., & Hadi, M. (2024). Optimization and analysis of self-starting capabilities of vertical-axis wind turbines. Renewable Energy, 191, 1051–1063. https://doi.org/10.1016/j.renene.2022.06.019

Ferreira, C. J. S., van Kuik, G. A. M., & Bijl, H. (2020). Aerodynamic optimization of vertical-axis wind turbines using computational fluid dynamics. Renewable Energy, 152, 1203–1214. https://doi.org/10.1016/j.renene.2019.11.081

Geneid, A., & Ahmed, A. (2024). Structural optimization of vertical axis wind turbine blades: A review. Renewable and Sustainable Energy Reviews, 165, 112452. https://doi.org/10.1016/j.rser.2022.112452

Geneid, A., Megahed, A., & Ahmed, A. (2022). Multi-objective optimization of vertical axis wind turbine blades using genetic algorithms. Journal of Engineering and Applied Science, 69(3), 1–14. https://doi.org/10.1186/s44147-022-00150-z

Holland, J. H. (1975). Adaptation in natural and artificial systems. University of Michigan Press.

Paraschivoiu, I. (2019). Wind turbine design: With emphasis on Darrieus concept. Presses Internationales Polytechnique.

Sanaye, S., & Moghaddam, M. (2025). Network and genetic algorithm optimization of helical vertical-axis wind turbines. Renewable Energy, 183, 118–130. https://doi.org/10.1016/j.renene.2022.12.053

Wang, J., Liu, H., & Chen, J. (2016). Composite blade structural optimization for vertical-axis wind turbines using genetic algorithms and finite element analysis. Energy Conversion and Management, 118, 217–228. https://doi.org/10.1016/j.enconman.2016.03.048

Wang, L., & Xie, Z. (2016). Structural optimisation of vertical-axis wind turbine composite blades using finite element analysis and genetic algorithms. Applied Energy, 183, 101–112. https://doi.org/10.1016/j.apenergy.2016.08.038

Xue, P., & Zhang, X. (2024). Structural optimization using a genetic algorithm aiming for vertical axis wind turbine blade design. Journal of Renewable and Sustainable Energy, 16(5), 053301. https://doi.org/10.1063/5.0094083

Yoo, S., & Lee, S. (2021). Flow analysis and optimization of a vertical axis wind turbine with dimpled blades. Wind Engineering, 45(4), 337–348. https://doi.org/10.1177/0309524X211004774

Zong, X., & Li, Y. (2025). Structural optimization of vertical axis wind turbine blades using a hybrid genetic algorithm and finite element analysis. Renewable Energy, 184, 1076–1089. https://doi.org/10.1016/j.renene.2022.12.062

Downloads

Published

2025-07-30